// Copyright (C) 2012, 2019 Austin Robot Technology, Jack O'Quin, Joshua Whitley // All rights reserved. // // Software License Agreement (BSD License 2.0) // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of {copyright_holder} nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. #include <gtest/gtest.h> #include <ros/package.h> #include <velodyne_pointcloud/calibration.h> #include <string> using namespace velodyne_pointcloud; // NOLINT std::string get_package_path() { std::string g_package_name("velodyne_pointcloud"); return ros::package::getPath(g_package_name); } /////////////////////////////////////////////////////////////// // Test cases /////////////////////////////////////////////////////////////// TEST(Calibration, missing_file) { Calibration calibration(false); calibration.read("./no_such_file.yaml"); EXPECT_FALSE(calibration.initialized); } TEST(Calibration, vlp16) { Calibration calibration(get_package_path() + "/params/VLP16db.yaml", false); EXPECT_TRUE(calibration.initialized); ASSERT_EQ(calibration.num_lasers, 16); // check some values for the first laser: LaserCorrection laser = calibration.laser_corrections[0]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.2617993877991494); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); // check similar values for the last laser: laser = calibration.laser_corrections[15]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, 0.2617993877991494); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); } TEST(Calibration, hdl32e) { Calibration calibration(get_package_path() + "/params/32db.yaml", false); EXPECT_TRUE(calibration.initialized); ASSERT_EQ(calibration.num_lasers, 32); // check some values for the first laser: LaserCorrection laser = calibration.laser_corrections[0]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.5352924815866609); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); // check similar values for the last laser: laser = calibration.laser_corrections[31]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, 0.18622663118779495); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); } TEST(Calibration, hdl64e) { Calibration calibration(get_package_path() + "/params/64e_utexas.yaml", false); EXPECT_TRUE(calibration.initialized); ASSERT_EQ(calibration.num_lasers, 64); // check some values for the first laser: LaserCorrection laser = calibration.laser_corrections[0]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.124932751059532); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); // check similar values for the last laser: laser = calibration.laser_corrections[63]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.209881335496902); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.0); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); } TEST(Calibration, hdl64e_s21) { Calibration calibration(get_package_path() + "/params/64e_s2.1-sztaki.yaml", false); EXPECT_TRUE(calibration.initialized); ASSERT_EQ(calibration.num_lasers, 64); // check some values for the first laser: LaserCorrection laser = calibration.laser_corrections[0]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.15304134919741974); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.025999999); EXPECT_EQ(laser.max_intensity, 235); EXPECT_EQ(laser.min_intensity, 30); // check similar values for the last laser: laser = calibration.laser_corrections[63]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.2106649408137298); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, -0.025999999); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); } TEST(Calibration, hdl64e_s2_float_intensities) { Calibration calibration(get_package_path() + "/tests/issue_84_float_intensities.yaml", false); EXPECT_TRUE(calibration.initialized); ASSERT_EQ(calibration.num_lasers, 64); // check some values for the first laser: LaserCorrection laser = calibration.laser_corrections[0]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.12118950050089745); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.025999999); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 40); // check similar values for laser 26: laser = calibration.laser_corrections[26]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.014916840599137901); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, 0.025999999); EXPECT_EQ(laser.max_intensity, 245); EXPECT_EQ(laser.min_intensity, 0); // check similar values for the last laser: laser = calibration.laser_corrections[63]; EXPECT_FALSE(laser.two_pt_correction_available); EXPECT_FLOAT_EQ(laser.vert_correction, -0.20683046990039078); EXPECT_FLOAT_EQ(laser.horiz_offset_correction, -0.025999999); EXPECT_EQ(laser.max_intensity, 255); EXPECT_EQ(laser.min_intensity, 0); } // Run all the tests that were declared with TEST() int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }