/********************************************************************* * * Software License Agreement (BSD License) * * Copyright (c) 2008, 2013, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Author: Eitan Marder-Eppstein * David V. Lu!! *********************************************************************/ #include <algorithm> #include <costmap_2d/inflation_layer.h> #include <costmap_2d/costmap_math.h> #include <costmap_2d/footprint.h> #include <boost/thread.hpp> #include <pluginlib/class_list_macros.h> PLUGINLIB_EXPORT_CLASS(costmap_2d::InflationLayer, costmap_2d::Layer) using costmap_2d::LETHAL_OBSTACLE; using costmap_2d::INSCRIBED_INFLATED_OBSTACLE; using costmap_2d::NO_INFORMATION; namespace costmap_2d { InflationLayer::InflationLayer() : resolution_(0) , inflation_radius_(0) , inscribed_radius_(0) , weight_(0) , inflate_unknown_(false) , cell_inflation_radius_(0) , cached_cell_inflation_radius_(0) , dsrv_(NULL) , seen_(NULL) , cached_costs_(NULL) , cached_distances_(NULL) , last_min_x_(-std::numeric_limits<float>::max()) , last_min_y_(-std::numeric_limits<float>::max()) , last_max_x_(std::numeric_limits<float>::max()) , last_max_y_(std::numeric_limits<float>::max()) { inflation_access_ = new boost::recursive_mutex(); } void InflationLayer::onInitialize() { { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); ros::NodeHandle nh("~/" + name_), g_nh; current_ = true; if (seen_) delete[] seen_; seen_ = NULL; seen_size_ = 0; need_reinflation_ = false; dynamic_reconfigure::Server<costmap_2d::InflationPluginConfig>::CallbackType cb = boost::bind( &InflationLayer::reconfigureCB, this, _1, _2); if (dsrv_ != NULL){ dsrv_->clearCallback(); dsrv_->setCallback(cb); } else { dsrv_ = new dynamic_reconfigure::Server<costmap_2d::InflationPluginConfig>(ros::NodeHandle("~/" + name_)); dsrv_->setCallback(cb); } } matchSize(); } void InflationLayer::reconfigureCB(costmap_2d::InflationPluginConfig &config, uint32_t level) { setInflationParameters(config.inflation_radius, config.cost_scaling_factor); if (enabled_ != config.enabled || inflate_unknown_ != config.inflate_unknown) { enabled_ = config.enabled; inflate_unknown_ = config.inflate_unknown; need_reinflation_ = true; } } void InflationLayer::matchSize() { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); costmap_2d::Costmap2D* costmap = layered_costmap_->getCostmap(); resolution_ = costmap->getResolution(); cell_inflation_radius_ = cellDistance(inflation_radius_); computeCaches(); unsigned int size_x = costmap->getSizeInCellsX(), size_y = costmap->getSizeInCellsY(); if (seen_) delete[] seen_; seen_size_ = size_x * size_y; seen_ = new bool[seen_size_]; } void InflationLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y, double* max_x, double* max_y) { if (need_reinflation_) { last_min_x_ = *min_x; last_min_y_ = *min_y; last_max_x_ = *max_x; last_max_y_ = *max_y; // For some reason when I make these -<double>::max() it does not // work with Costmap2D::worldToMapEnforceBounds(), so I'm using // -<float>::max() instead. *min_x = -std::numeric_limits<float>::max(); *min_y = -std::numeric_limits<float>::max(); *max_x = std::numeric_limits<float>::max(); *max_y = std::numeric_limits<float>::max(); need_reinflation_ = false; } else { double tmp_min_x = last_min_x_; double tmp_min_y = last_min_y_; double tmp_max_x = last_max_x_; double tmp_max_y = last_max_y_; last_min_x_ = *min_x; last_min_y_ = *min_y; last_max_x_ = *max_x; last_max_y_ = *max_y; *min_x = std::min(tmp_min_x, *min_x) - inflation_radius_; *min_y = std::min(tmp_min_y, *min_y) - inflation_radius_; *max_x = std::max(tmp_max_x, *max_x) + inflation_radius_; *max_y = std::max(tmp_max_y, *max_y) + inflation_radius_; } } void InflationLayer::onFootprintChanged() { inscribed_radius_ = layered_costmap_->getInscribedRadius(); cell_inflation_radius_ = cellDistance(inflation_radius_); computeCaches(); need_reinflation_ = true; ROS_DEBUG("InflationLayer::onFootprintChanged(): num footprint points: %lu," " inscribed_radius_ = %.3f, inflation_radius_ = %.3f", layered_costmap_->getFootprint().size(), inscribed_radius_, inflation_radius_); } void InflationLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j) { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); if (cell_inflation_radius_ == 0) return; // make sure the inflation list is empty at the beginning of the cycle (should always be true) ROS_ASSERT_MSG(inflation_cells_.empty(), "The inflation list must be empty at the beginning of inflation"); unsigned char* master_array = master_grid.getCharMap(); unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY(); if (seen_ == NULL) { ROS_WARN("InflationLayer::updateCosts(): seen_ array is NULL"); seen_size_ = size_x * size_y; seen_ = new bool[seen_size_]; } else if (seen_size_ != size_x * size_y) { ROS_WARN("InflationLayer::updateCosts(): seen_ array size is wrong"); delete[] seen_; seen_size_ = size_x * size_y; seen_ = new bool[seen_size_]; } memset(seen_, false, size_x * size_y * sizeof(bool)); // We need to include in the inflation cells outside the bounding // box min_i...max_j, by the amount cell_inflation_radius_. Cells // up to that distance outside the box can still influence the costs // stored in cells inside the box. min_i -= cell_inflation_radius_; min_j -= cell_inflation_radius_; max_i += cell_inflation_radius_; max_j += cell_inflation_radius_; min_i = std::max(0, min_i); min_j = std::max(0, min_j); max_i = std::min(int(size_x), max_i); max_j = std::min(int(size_y), max_j); // Inflation list; we append cells to visit in a list associated with its distance to the nearest obstacle // We use a map<distance, list> to emulate the priority queue used before, with a notable performance boost // Start with lethal obstacles: by definition distance is 0.0 std::vector<CellData>& obs_bin = inflation_cells_[0.0]; for (int j = min_j; j < max_j; j++) { for (int i = min_i; i < max_i; i++) { int index = master_grid.getIndex(i, j); unsigned char cost = master_array[index]; if (cost == LETHAL_OBSTACLE) { obs_bin.push_back(CellData(index, i, j, i, j)); } } } // Process cells by increasing distance; new cells are appended to the corresponding distance bin, so they // can overtake previously inserted but farther away cells std::map<double, std::vector<CellData> >::iterator bin; for (bin = inflation_cells_.begin(); bin != inflation_cells_.end(); ++bin) { for (int i = 0; i < bin->second.size(); ++i) { // process all cells at distance dist_bin.first const CellData& cell = bin->second[i]; unsigned int index = cell.index_; // ignore if already visited if (seen_[index]) { continue; } seen_[index] = true; unsigned int mx = cell.x_; unsigned int my = cell.y_; unsigned int sx = cell.src_x_; unsigned int sy = cell.src_y_; // assign the cost associated with the distance from an obstacle to the cell unsigned char cost = costLookup(mx, my, sx, sy); unsigned char old_cost = master_array[index]; if (old_cost == NO_INFORMATION && (inflate_unknown_ ? (cost > FREE_SPACE) : (cost >= INSCRIBED_INFLATED_OBSTACLE))) master_array[index] = cost; else master_array[index] = std::max(old_cost, cost); // attempt to put the neighbors of the current cell onto the inflation list if (mx > 0) enqueue(index - 1, mx - 1, my, sx, sy); if (my > 0) enqueue(index - size_x, mx, my - 1, sx, sy); if (mx < size_x - 1) enqueue(index + 1, mx + 1, my, sx, sy); if (my < size_y - 1) enqueue(index + size_x, mx, my + 1, sx, sy); } } inflation_cells_.clear(); } /** * @brief Given an index of a cell in the costmap, place it into a list pending for obstacle inflation * @param grid The costmap * @param index The index of the cell * @param mx The x coordinate of the cell (can be computed from the index, but saves time to store it) * @param my The y coordinate of the cell (can be computed from the index, but saves time to store it) * @param src_x The x index of the obstacle point inflation started at * @param src_y The y index of the obstacle point inflation started at */ inline void InflationLayer::enqueue(unsigned int index, unsigned int mx, unsigned int my, unsigned int src_x, unsigned int src_y) { if (!seen_[index]) { // we compute our distance table one cell further than the inflation radius dictates so we can make the check below double distance = distanceLookup(mx, my, src_x, src_y); // we only want to put the cell in the list if it is within the inflation radius of the obstacle point if (distance > cell_inflation_radius_) return; // push the cell data onto the inflation list and mark inflation_cells_[distance].push_back(CellData(index, mx, my, src_x, src_y)); } } void InflationLayer::computeCaches() { if (cell_inflation_radius_ == 0) return; // based on the inflation radius... compute distance and cost caches if (cell_inflation_radius_ != cached_cell_inflation_radius_) { deleteKernels(); cached_costs_ = new unsigned char*[cell_inflation_radius_ + 2]; cached_distances_ = new double*[cell_inflation_radius_ + 2]; for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i) { cached_costs_[i] = new unsigned char[cell_inflation_radius_ + 2]; cached_distances_[i] = new double[cell_inflation_radius_ + 2]; for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j) { cached_distances_[i][j] = hypot(i, j); } } cached_cell_inflation_radius_ = cell_inflation_radius_; } for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i) { for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j) { cached_costs_[i][j] = computeCost(cached_distances_[i][j]); } } } void InflationLayer::deleteKernels() { if (cached_distances_ != NULL) { for (unsigned int i = 0; i <= cached_cell_inflation_radius_ + 1; ++i) { if (cached_distances_[i]) delete[] cached_distances_[i]; } if (cached_distances_) delete[] cached_distances_; cached_distances_ = NULL; } if (cached_costs_ != NULL) { for (unsigned int i = 0; i <= cached_cell_inflation_radius_ + 1; ++i) { if (cached_costs_[i]) delete[] cached_costs_[i]; } delete[] cached_costs_; cached_costs_ = NULL; } } void InflationLayer::setInflationParameters(double inflation_radius, double cost_scaling_factor) { if (weight_ != cost_scaling_factor || inflation_radius_ != inflation_radius) { // Lock here so that reconfiguring the inflation radius doesn't cause segfaults // when accessing the cached arrays boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); inflation_radius_ = inflation_radius; cell_inflation_radius_ = cellDistance(inflation_radius_); weight_ = cost_scaling_factor; need_reinflation_ = true; computeCaches(); } } } // namespace costmap_2d